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Abstract 

Numerous studies of the water-soluble fraction (WSF) from crude oil have 

concluded that polycyclic aromatic hydrocarbons (PAHs) are the primary 

causative agents for early-life stage (ELS) fish toxicity. Noteworthy is the 

lack of studies demonstrating that the sum of PAHs are capable of causing 

toxic effects in ELS fish at the low levels claimed (0.1 - 5 µg/L) without being 

part of a complex crude oil mixture. Crude oil and the WSF are composed of 

thousands of other compounds that co-occur and likely contribute to crude 

oil toxicity. Based on the available data, it appears that the syndrome of 

effects (lower heart rate, edemas, and morphological abnormalities) for ELS 

fish exposed to the aqueous fraction of a crude oil mixture is commonly 

observed in studies exposing fish embryos to high concentrations of a 

variety of compounds and may be a non-specific response. We conclude that 

the available data support the hypothesis that this syndrome of effects is 

likely the result of baseline toxicity (not receptor based) due to membrane 

disruption and resulting alteration in ion (e.g. calcium and potassium) 

homeostasis. We acknowledge the possibility of some compounds in the WSF 

capable of causing a specific receptor based toxicity response to ELS fish; 

however, such compounds have not been identified nor their receptor 

characterized. Concluding that PAHs are the main toxic compounds for crude 

oil exposure is misleading and does not result in guideline values that can be 

useful for environmental protection. Water quality guidelines for any single 

chemical or suite of chemicals must be based on a complete understanding 

of exposure concentrations, mechanism of action, potency, and resulting 

response. This review focuses on the toxic effects reported for fish embryos 

and the purported toxic concentrations observed in the aqueous phase of an 

oil/water mixture, the known levels of toxicity for individual PAHs, a toxic 

unit approach for characterizing mixtures, and the potential molecular 

initiating event for ELS toxicity in fish. This review also has implications for a 
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large number of studies exposing ELS fish to a variety of compounds at high 

concentrations that result in a common baseline toxic response. 

1. INTRODUCTION 

Over the past decade there has been a rapid increase in the number of 

studies attempting to characterize the toxicity of crude oil. Specifically, the 

focus has been on the aqueous compounds present after an oil spill, which is 

known as the water-soluble fraction (WSF), water-accommodated fraction 

(WAF) and others (e.g., chemically-enhanced WAF, [CEWAF]) and high-

energy WAF [HEWAF]). We know that ELS fish are responding to the 

dissolved fraction1 and not oil droplets, hence we will use the term WSF for 

this article to denote the aqueous phase containing crude oil compounds.  

Many of these ELS fish studies concluded that polycyclic aromatic 

hydrocarbons (PAHs) were the component responsible for the observed toxic 

response, especially for WAFs or WSFs that were “weathered” (i.e. loss of 

volatile compounds)2–5. This conclusion is based on the supposition that as 

the “lighter” relatively “less toxic” components volatilize, the remaining 

hydrophobic compounds causing ELS fish to exhibit abnormal development 

are mostly the more toxic PAHs. 

A large number of investigators have conducted toxicity experiments with 

crude oil and ascribed the toxicity to a limited group of PAHs, specifically the 

tricyclic aromatics acting by an AhR-independent mechanism3–10. Frequently, 

toxicity is reported for ELS fish in terms of the sum of PAHs (∑PAHs) without 

regard to compound potency or relative abundance, a topic that has been 

approached previously by others11,12. A key point here is that no studies 

exist demonstrating that ∑PAHs are capable of causing toxic effects in ELS 

fish at the low levels claimed (0.1 – 5 µg/L)2,3,13–16 without being part of a 

crude oil WSF or WAF. As noted by many authors, PAHs are just a small 

fraction of the aqueous concentration of organic compounds found in this 
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complex mixture; hence, the toxic potential of the non-PAH fraction is not 

considered. Consequently, we believe that ∑PAHs may not be the most 

appropriate dose metric for crude oil toxicity.   

There are several methods for preparing a WSF or WAF that will have a 

substantial impact on the composition of the aqueous fraction used for 

exposure studies.  One common method is to coat gravel with crude oil at 

various rates of loading, air dry or heat (weathering), then flow water over 

the gravel to achieve a water soluble fraction.  The degree of weathering can 

be controlled to achieve a different mix of PAHs and other compounds. 

Several issues noted for this technique include variable aqueous 

concentrations over time, variable compound profiles, and the potential for 

microbial production of metabolites17.  Other methods include a high and low 

energy water accommodated fraction (LEWAF and HEWAF) in addition to 

chemically enhanced WAF that includes oil dispersants at various 

concentrations to facilitate solubilization of crude oil.  Each one of these 

methods (with or without weathering) can produce vastly different water 

soluble fractions of crude oil varying in component concentration and profile.  

All of these methods will certainly confound the interpretation of the results 

especially with an inappropriate or poorly defined dose metric. 

The intent of this review is to examine the assumption that tricyclic PAHs are 

primarily responsible for all adverse effects due to a crude oil WSF exposure 

and to enumerate the reasons why this conclusion is not strongly supported 

by the available literature.  Our working hypothesis is that most of the 

current studies characterizing ELS toxicity in fish exposed to a WSF from 

crude oil are describing a non-specific baseline toxic effect that is 

characterized by a common syndrome of effects elicited by a large variety of 

organic compounds at relatively high exposure concentrations. This is the 

simplest explanation for the observed responses and is the appropriate 

working hypothesis until more definitive data can be collected that includes 
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critical experiments and identifying a defined molecular initiating event 

(MIE). We also acknowledge the possibility that uncharacterized compounds 

in the WSF are acting by unidentified specific mechanisms, with greater 

potency than observed for the tricyclic PAHs.  

Our goal is to foster a critical evaluation of this paradigm and highlight the 

inappropriate and misleading conclusions regarding the toxic components 

found in crude oil. Without a scientifically defensible framework for 

characterizing the potential toxic response resulting from exposure to 

petroleum compounds, achieving environmental protection based on faulty 

assumptions will be counterproductive. We also encourage a greater focus 

on those uncharacterized aqueous-phase compounds that are likely 

important contributors to the toxic response that act by specific or non-

specific modes of action, especially the polar fraction. 

2.  CRUDE OIL, THE WATER-SOLUBLE FRACTION, AND MAJOR 

COMPONENTS 

Crude oil contains thousands of compounds18 that range in water solubility 

from highly soluble to essentially insoluble. This includes a labile fraction 

known as volatile organic compounds (VOCs), which comprises about 15% 

of the total hydrocarbon load in whole oil19. These VOCs evaporate quickly 

after an oil spill; however, a majority of the hydrocarbons and polar 

compounds remain and dissipate slowly depending on their physicochemical 

characteristics, such as the octanol-water partition coefficient (Kow). Crude 

oil from various geological formations exhibit very different profiles of 

compounds20,21. For example, Faksness et al.21 noted that two Norwegian 

oils (Goliat and Heidrun) varied 2 to 4-fold for many chemical classes 

including 2 – 3 ring PAHs, C3 benzenes, and total petroleum hydrocarbons. 

Crude oil contains a wide variety of organic compounds other than 

hydrocarbons (carbon and hydrogen only). There are a very large number of 
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polar compounds containing sulfur, nitrogen, and oxygen and these can 

constitute a major portion of the aqueous fraction18,22. Many of these are 

heterocyclic compounds resembling PAHs in structure and properties and 

only a few have been identified, many with alkyl groups (C1 – C4). Examples 

of these include carbazoles, xanthones, and thioxanthones, in addition to 

dibenzothiophenes all with C1-C4 alkyl groups23. It was also noted by Sauer 

and Uhler24 that the percentage composition for many heterocyclic 

compounds in a WSF is enhanced via weathering.  

Polycyclic aromatic hydrocarbons (PAHs) constitute a very large group 

possibly reaching 10,000 unique compounds25. Only about 100 PAHs have 

been identified and studied26 and they vary widely in physical-chemical 

properties and toxic potency27. However, in most crude oils PAHs comprised 

less than 1% of the total petroleum hydrocarbons19 and most of the 

compounds are unidentified and commonly known as the unresolved 

complex mixture (UCM)28. For example, the data in Sammarco et al.19 show 

that weathered field samples contained aqueous concentrations of total 

petroleum hydrocarbons (TPHs) that were 2 orders of magnitude higher than 

reported for total PAHs, which is common for many such studies22,29.  

The UCM from whole crude oil may have up to 250,000 compounds, which 

has been described as the most complex mixture of organic molecules in the 

environment30. It is important to note that even after separation into 

aliphatic, aromatic, and polar fractions, each one of those groups has its own 

UCM with a large number of unidentified compounds23,30,31. It is also 

important to note that the UCM of a WSF can constitute a high percentage of 

the total petroleum hydrocarbon fraction, with some ranging from 90 – 

98%21. As noted by Melbye et al.22, the UCM is resistant to weathering and 

likely to persist in the environment. Several authors also noted that the UCM 

constituted approximately 70% of the WSF and it contains high levels of 

polar compounds, including cyclic and aromatic sulfoxide compounds22,32. 
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This is supported by Lang et al.33 who noted that polar compounds can 

dominate a weathered WSF (98% of total). Recent studies have attempted 

to characterize the unknown compounds occurring in weathered oil and the 

UCM28,34,35. High concentrations (100 – 1,000 µg/L) of alkylphenols, 

alkylbenzenes (C3 – C6), alkylated aromatic heterocycles (quinolines, 

carbazoles, thiophenes, benzothiophenes, and benzofurans) were observed 

in WAFs by Barron et al.36 and were generally far more abundant than PAHs.  

3.  CURRENT UNDERSTANDING AND MISUNDERSTANDING OF CRUDE 

OIL TOXICITY IN ELS FISH  

The syndrome associated with ELS toxicity in fish exposed to crude oil WSF 

includes fluid accumulation (edema) around the heart and yolk sac, body 

axis and craniofacial abnormalities, and heart beat abnormalities3,13,15,37. 

Many authors have reported these responses for a variety of larval fish 

species exposed to crude oil and the vast majority express toxicity in terms 

of ∑PAHs, which is based on a limited list of 40 – 50 PAHs16,38,39. The 

prevailing conclusion among most researchers is that the tricyclic PAHs 

(specifically alkylated phenanthrenes) are the most toxic components in 

crude oil and responsible for this syndrome of effects in larval fish13,15,37. 

Interestingly, naphthalenes are included in the ∑PAHs dose metric8,40,41; 

however, they are not expected to contribute to the ELS fish toxicity 

syndrome6. 

The recent hypothesis regarding the molecular initiating event (MIE) for PAH 

toxicity highlights abnormal calcium cycling and alterations to the cellular 

flux of potassium9,37,42.  Specific targets are thought to be rectifying 

potassium channels and sarcoplasmic reticulum calcium channels16. The 

main focus is on tricyclic PAHs and the MIE is assumed to be aryl 

hydrocarbon receptor (AhR)-independent15,37. This is a separate mechanism 

from that described for other PAHs (such as retene [an alkylphenanthrene] 
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and many high-molecular weight PAHs) known to act by AhR-dependent 

toxicity causing toxicity to ELS fish at very low water and tissue 

concentrations43, and is known as blue-sac disease. These recent studies 

highlighting the disruption of ion homeostasis in cardiac myocytes exposed 

to crude oil mixtures9,42; however do not provide direct evidence of the 

responsible compounds or group of compounds that cause these effects and 

the exact MIE (i.e. specific or non-specific mode of action). 

 3.1.  Single Compound Toxicity Versus Mixture Toxicity  

There is only circumstantial data to support the conclusion that the ∑PAHs, 

specifically the tricyclic PAHs, in the range of 0.1 – 5 µg/L are causing 

toxicity in ELS fish, which is observed only when they are exposed to a 

complex mixture (WSF or WAF). Studies examining developmental toxicity in 

fish exposed to individual PAHs indicate toxic concentrations orders of 

magnitude above this level5,44,45. Geier et al.45 tested 123 PAHs for more 

than 20 developmental endpoints in zebrafish (Danio rerio) and all 

compounds (except 1,3 dinitropyrene) elicited responses above 0.5 µM, or 

approximately 100 µg/L (most were 5 - 50 µM).  

A number of studies attempting to characterize the mechanism of toxicity for 

PAHs exposed ELS fish to mg/L (ppm) aqueous concentrations often with 

DMSO allowing the compounds to exceed aqueous solubility6,7,46. These 

highly cited single-compound studies at high exposure concentrations 

describing the syndrome of ELS fish toxicity in great detail for PAHs 

(specifically tricyclic PAHs) are the basis for dozens of subsequent studies 

supporting the conclusion of PAH toxicity as the primary causative agents for 

a complex mixture of hydrocarbons found in the WSF.  Most of these high-

dose studies have been performed with warm-water species and one author 

has claimed that zebrafish (D. rerio) are not sensitive to PAHs37.  Even 

though these high-dose studies were conducted with zebrafish, mackerel, 
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and tuna (D. rerio, Scomber japonicas, Thunnus albacares, Thunnus 

orientalis), there is no reason to assume these warm-water species are less 

sensitive than other species47–49. For example, Petersen and Kristensen50 

found similar bioconcentration factors for zebrafish, cod, herring, and turbot 

(D. rerio, Gadus morhua, Clupea harengus, and Scophthalmus maximus) 

larvae exposed to phenanthrene. Additionally, a warm-water species such as 

mahi-mahi exhibited similar effect concentrations in terms of ∑PAH within a 

WAF compared to cold-water species such as herring (Clupea pallasi)3.  

Several researchers have examined the toxicity of phenanthrene and 

alkylphenanthrenes and found ELS fish responses at water concentrations 

generally in the range of 40 – 100 µg/L and higher13,44,51,52.  The target PAHs 

(tricyclics such as phenanthrene and alkylphenanthrenes) are present in a 

WSF at concentrations in the range of 0.1 - 1 µg/L, and claimed to be the 

sole cause of the ELS toxicity syndrome2,13,15,37,42,53. Obviously, there is a 

large discrepancy between what single-compound studies demonstrate and 

these same compounds in a complex crude-oil derived WSF. 

Because most studies reporting ∑PAHs as the dose metric contain the 

putative highly toxic tricyclic PAHs at sub ppb concentrations, the 

discrepancy between high-dose single compound responses and orders of 

magnitude lower concentrations in a mixture must be rationalized as either a 

synergistic effect among components or the presence of compounds with far 

greater potency. There are no data to support either of these potential 

hypotheses for tricyclic PAHs acting by an AhR-independent mechanism. 

Also, using ∑PAHs as a marker for the actual toxic component of an oil WSF 

(e.g., alkylated phenanthrene) would not necessarily translate among 

different WSF mixtures in time and space as a result of differential 

weathering and other physicochemical properties. Crude oils are known to 

contain vastly different profiles of hydrocarbons and PAHs20,21 and a toxic 

value based on ∑PAHs for one WSF would likely not translate to another. 
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Also noteworthy is the analysis for a variety of PAHs and their ability to 

cause toxicity for ELS fish. Some PAHs such as chrysene produce no effects 

and others characteristically lead to different responses as a function of AhR 

dependence when exposed to high concentrations37,54. Each compound 

exhibits variability in water solubility, uptake kinetics, tissue diffusion 

kinetics, and rates of metabolic transformation that determine 

bioaccumulation and toxicity. Without measured tissue concentrations, 

categorization of any toxic response is far more difficult due to compound 

and species differences55,56. For example, there is large interspecific 

variability for biotransformation of PAHs as well as large variability (e.g. 100 

fold) among PAHs for a given species57. 

Fractionation studies that isolate the fraction of crude oil that is most toxic 

and quantify the alkanes and PAHs are appealing, but often fall short. For 

example Bornstein et al.29 determined the most toxic fractions (F3-1-2, F3-

1-3, and F3-1-4) contained high levels of PAHs (parent and alkylated forms), 

but only accounted for a small percentage of the total known analytes in 

each fraction that likely exhibited similar physicochemical properties and 

probably contributed to the toxic response. Interestingly, in that study the 

most toxic fraction (F3-1-3) contained ∑PAH concentrations that were 8x 

lower and 28x higher than two other fractions exhibiting similar toxicity. 

Bornstein et al.29 acknowledged that compounds other than PAHs could have 

contributed to the toxicity for ELS fish exposed to a weathered crude oil 

WAF. Interestingly, a few studies have shown reduced variability in toxicity 

metrics when plotting these against the sum of tricyclic PAHs instead of 

∑PAHs7,40; however this does not provide strong support for tricyclic PAHs as 

the responsible compounds.  Such grouping provides a set of compounds 

with a narrower range of Kow values, which may reduce variability.  Also, as 

seen for the Esbaugh et al.40 data, the correlation between the sum of 

tricyclic and tetracyclic PAHs is high (r=0.85) among WAF fractions, which 
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suggests that variability would also be reduced with tetracyclic PAHs over 

that seen for ∑PAHs as the dose metric. The latter group have been 

implicated in developmental abnormalities in ELS fish by a different MIE 

(AhR-dependent) as that for tricyclic PAHs54; however they occur at 

concentrations 12x – 26x lower than observed for the tricyclic PAHs and are 

too low to cause effects.   

3.2.  Myriad Compounds in the Water-Soluble Fraction Not 

Considered 

There is currently no support to infer the primary causative agent for ELS 

fish toxicity of a crude oil WSF is limited to only the quantifiable compounds 

(PAHs), given that myriad highly bioaccumulative, non-PAH compounds are 

present in the WSF of crude oils. Studies such as Melbye et al.22 

demonstrated that the polar fraction can dominate the toxicity of a WSF and 

is important in characterizing crude oil toxicity.  

Recent studies have proposed that the UCM contains a number of toxic 

compounds including branched alkyl benzenes, indanes, and tetralines35,58,59. 

Many other compounds in the UCM that exhibit log10Kow values in the range 

of 4 – 6 may also be toxic and co-occur with the commonly quantified PAHs 

including such groups as aliphatic naphthalenes, aliphatic monocyclic acids, 

monocyclic thiophenic carboxylic acids, and monoaromatic 

hydrocarbons35,58,59. Some of these compounds can be toxic to fish 

hepatocytes at low concentrations59 and at sublethal concentrations for 

mussels (Mytilus edulis)35,58. The 22 compounds listed in Petersen et al.59 

are very hydrophobic with most exhibiting log10Kow values in the 3 – 6 range 

indicating a high potential for bioaccumulation. Booth et al.35 determined an 

EC20 of 7 µg/L for mussels (reduced feeding) exposed to a mixture of 

branched alkyl benzenes, a major component of the UCM. This occurred at a 

tissue concentration of approximately 2 mg/Kg wet weight (converted from 
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dry wt.), indicating that these compounds are very toxic and may be 

important for ELS fish toxicity. If these compounds are representative of the 

hundreds of compounds found in the UCM, high tissue concentrations would 

be expected for relatively low water concentrations (µg/L) from a WSF based 

on simple partitioning models.  

3.3. Genomic Changes Do Not Confirm the MIE  

A number of studies have characterized myriad genomic changes elicited by 

a crude oil WSF as they relate to the ELS fish toxicity syndrome60,61; 

however, these responses were observed after exposure to a mixture of 

thousands of compounds. One proteomic study examined the dose-response 

relationship between phenanthrene exposure (5 – 345 µg/L) and detected 

proteins in zebrafish embryos62. Of the 716 proteins examined, only two 

exhibited an expression profile (benchmark concentration for protein 

abundance alteration; BMCp20) corresponding to an exposure concentration 

of 1.4 and 5 µg/L (calculated), respectively, which were the lowest values 

for the study and far above those claimed by other authors for tricyclic PAHs.   

The WSF mixture studies report a large number of up-regulated and down-

regulated genes that may be responsible for the observed phenotypic 

responses. These likely vary by species or major taxonomic group, and 

many may be a result of multiple MIEs. Many of these genomic changes are 

likely caused by altered calcium cycling and K+ flux, which may result from 

both specific and non-specific toxicity. While these data are interesting and 

potentially useful as biomarkers, many of these are downstream events 

elicited by the unknown MIE, which are likely a consequence of altered ionic 

homeostasis. Of course, within the matrix of transcriptional changes are 

potentially specific changes resulting from receptor-based alterations from 

known or unknown WSF compounds. It would be informative to examine the 

genomic changes for other compounds causing the ELS fish toxicity 
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syndrome (Table 1) and compare these results to those for a crude oil WSF. 

Perhaps markers unique to crude oil toxicity can be identified and utilized. 

4.  BASELINE TOXICITY  

4.1. An Alternative MIE for Crude Oil WSF Toxicity in ELS Fish 

Baseline toxicological effects, also known as narcosis or non-specific 

toxicity82,83, is best described for aquatic species and occurs at very 

predictable whole-body concentrations. The purported action for all organic 

compounds acting by a non-specific action is membrane disruption and 

impaired ion homeostasis82,84. As noted by many authors, baseline toxicity 

occurs when internal concentrations of organic compounds achieve a defined 

level in membranes and disrupt normal function such as ion transport84–86. 

The action of baseline toxicants is known to cause alterations in ion 

homeostasis (calcium and potassium) as a consequence of high 

concentrations of compounds in the membrane leading to reduced fluidity 

and damage87–89. Escher et al.88 concluded that disturbance of membrane 

bound proteins is a likely result of baseline toxicity and add that ligand-

gated ion channels are the most important targets in baseline toxicity for 

mammals. They also note that Na+/K+ ATPase activity is generally 

unaffected, as shown by van Wezel et al.90, which may be an important 

observation for physiology studies. Unfortunately, baseline toxicity has not 

been studied with the same sophistication as that for crude oil toxicity in ELS 

fish. Consequently, there are many unknowns regarding sublethal outcomes, 

physiologic change, and compromised biochemical pathways for baseline 

toxicity. 

The baseline lethal response has been demonstrated for hundreds of organic 

compounds64,91,92 and occurs for whole-body organisms at approximately 2 – 

8 mmol/Kg (wet weight) or 40 – 160 mmol/Kg lipid. Sublethal responses are 

rarely reported (but see Table 1) and occur in the 0.2 – 0.8 mmol/Kg 
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range64,91,93,94. Depending on the molecular weight, sublethal responses 

should occur at approximately 40 – 160 mg/Kg whole-body wet weight for a 

compound of 200 daltons, which is approximately 10 times lower than 

observed mortality. Consider the log10Kow for many PAH compounds and the 

water concentration required to result in high tissue burdens causing such 

baseline toxicity. For example, a PAH with a log10Kow of 5 (most alkylated 

phenanthrenes) would result in a tissue concentration approaching 40 - 200 

mg/Kg for an aqueous concentration of 10 - 50 µg/L, which is the range for 

baseline toxicity (mortality and sublethal effects), especially for low lipid 

content fish embryos. Coincidently, this is the aqueous concentration range 

reported by Turcotte et al.44 for a series of alkylated phenanthrenes causing 

toxic effects in ELS medaka (Oryzias latipes) (Table 1).  This relationship 

would hold for any organic compound exhibiting a log10Kow in this range and 

many occur in the UCM. Of course, metabolism of these compounds must be 

considered when predicting tissue concentrations; however even if 90% of 

the compound is metabolized, predicted sublethal tissue concentrations 

would still be within the range observed for baseline toxicity. It is important 

to note that the unmeasured metabolites for such single compound studies 

may also contribute to the toxic response and may be as toxic or more toxic 

compared to the parent compound95. 

Within an organism, the tissue concentration for the baseline toxicity 

response is remarkably consistent. The main reason baseline toxicity occurs 

within a narrow range of internal concentrations is that membranes will lose 

fluidity when these lipophilic compounds achieve a critical concentration88 

and this is a common feature among all organisms. Once this critical 

membrane concentration is reached, many normal membrane functions are 

altered, such as ionophore regulation of internal and external cell 

concentrations of important ions, such as potassium, chloride, and calcium. 

These imbalances rapidly lead to cell injury and ultimately organism death at 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 



15 
 

these well-defined internal concentrations. At sublethal concentrations, cell 

function is inhibited resulting in a variety of responses, including edemas, 

cardiac dysfunction, and skeletal abnormalities, as seen for a variety of 

organic compounds (Table 1).  

The toxicity of most compounds acting by a baseline mode of action is 

correlated with Kow indicating a lack of specificity and more likely a 

physicochemical partitioning from aqueous exposure to the internal 

concentration.  As noted by Turcotte et al.44 and Hodson13 a high correlatio

exists between ELS fish toxicity and logKow for a variety of individual PAHs 

indicating the likelihood of baseline toxicity. These correlations exhibit slope

that are very close or identical to the universal narcosis slope of -0.945 for 

non-polar compounds described by Di Toro et al.91.  Petersen et al.59 also 

observed a high correlation between the fish hepatocyte toxicity and logKow

for a variety of compounds associated with the UCM suggesting a non-

specific mode of action; however, it is possible that some of these 

compounds may cause specific toxic effects via undetermined receptors.   

Two recent studies highlighted the role of calcium cycling in baseline toxicit

One study, Antczak et al.84 provided compelling data that inhibition of 

sarcoplasmic reticulum Ca2+ ATPase (SERCA) plays an important role for th

MIE in baseline toxicity. Another study is a meta-analysis of the 

transcriptome for zebrafish embryo studies as a function of chemical 

exposure (60 different compounds), which noted a striking similarity among

studies for downregulation of genes related to calcium homeostasis96. Other

studies relating alterations in calcium homeostasis to membrane disruption 

include Farber87 and Rojanasakul et al.97. It is our hypothesis that this 

syndrome of effects (deformities, heart rate alteration, spinal curvature, 

growth effects, pericaridal edema and abnormalities, and yolk sac edema) 

described for larval fish exposed to crude oil and other compounds appears 

to be the result of baseline toxicity. This is the simplest model for the 

393 

394 

395 

396 

397 

398 

399 

n 400 

401 

s 402 

403 

404 

 405 

406 

407 

408 

y. 409 

410 

e 411 

412 

413 

 414 

 415 

416 

417 

418 

419 

420 

421 



16 
 

observed responses from a crude oil WSF and other compounds (Table 1); 

however, we cannot rule out more specific acting mechanisms. 

It is possible that the reduction in heart rate described by Brette et al.7,9 for 

myocytes from juvenile and adult fish may be a specific response to PAHs 

and/or other components in a WSF elicited by channel blockage. To our 

knowledge, this level of detail for the mechanistic process of cardiac 

abnormalities described by these authors has not been examined for 

baseline toxicity. Phenanthrene was tested in Brette et al.7, but at 

concentrations expected to cause baseline toxicity. A critical experiment 

would entail similar studies with myocytes exposed to known baseline 

toxicants. Additional studies with PAH mixtures at environmentally relevant 

levels in relation to plasma and ambient water concentrations would also be 

necessary.  

4.2.  Other Chemicals Cause Similar Responses in ELS Fish 

There is strong support that this suite of abnormalities for larval fish 

exposed to high concentrations of a variety of compounds is not unique for 

PAHs and is more indicative of a baseline response. Noted chemicals include 

alkylphenols (mixture)98, bisphenol A69, benzo[a]pyrene and fluoranthene99, 

aniline and 6 chlorinated anilines71, triclosan67, acrylamide66, and diketone 

antibiotics100. Horie et al.65 tested 20 chemicals (metals and organic 

compounds, comprising of pesticides, pharmaceuticals, aromatics, and 

chlorinated anilines) using the OECD short-term toxicity test for fish embryo 

and sac-fry stages. For most organic compounds and one metal at high 

concentration the heart rate for zebrafish was significantly reduced. Most of 

the organic compounds in this study caused yolk-sac and pericardial edema, 

inhibition of swim bladder inflation, and body curvature at high concentration 

indicating that these are common effects for all organic compounds at high 
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exposure concentrations. As noted by Roush et al.101, pericardial edema is 

commonly observed response in fish embryo toxicity testing. 

Even nanoparticles are known to disrupt membrane potential resulting in 

altered intracellular potassium and calcium levels through depolarization of 

the membrane97,102, causing similar responses to that observed for baseline 

toxicity. Related to that is the observation of yolk sac and pericardial edema 

and fin malformations in zebrafish embryos exposed to a variety of 

nanoparticles103. Additionally, Wu et al.104 observed pericardial edema, spinal 

curvature, and a variety of morphological abnormalities in medaka embryos 

exposed to silver nanoparticles and one study105 recommends assessing 

intracellular calcium as a screening tool for nanoparticle toxicity.  

As noted by McCarty et al.64 an evaluation of 161 neutral compounds 

causing baseline toxicity for small aquatic organisms exhibited a geometric 

mean lethal residue (LR50) (also known as the critical body residue (CBR)) 

of 1.80 mmol/kg (mM) wet weight (95% CI 0.18–18.0). Table 1 lists the 

LC50 values for several compounds, which was translated to a LR50 for 

comparison to the range noted by several authors for baseline toxicity64,85. 

This was accomplished with a standard bioconcentration factor (BCF) 

prediction equation using the Kow106. The BCF equation was rearranged to 

predict the LR50 based on the LC5063. The LC50 was not available for the 

Turcotte et al.44 data so the EC50 data were used for these calculations. The 

data in Table 1 for 30 organic compounds, 6 WAF mixtures, and 2 metals 

(excluding nanoparticles) also demonstrate that the syndrome of effects for 

ELS fish, including lowered heart rate, edemas, body curvature, and 

impaired swim bladder inflation is a result of baseline toxicity. 

The LR50 for 29 of the organic compounds in Table 1 were very close to this 

mean baseline LR50 value (CBR) of 1.8 mM (within a factor of 3), or 

exceeded it.  This was also true for the crude oil WAFs assuming a mean 
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log10 Kow of 4. The LR50 for one compound (lovastatin) was less than 3x 

below the mean LR50, but within the 95% CI and one compound 

(cymoxanil) was far below the expected baseline LR50.  In some cases an 

LR50 may be lower than expected as a result of a pH specific Kow, rapid 

half-life, or the presence of toxic metabolites. Pharmaceuticals such as 

propranolol and diclofenac can cause specific effects at low doses and are 

also known to cause baseline toxicity at high doses as demonstrated by 

Escher et al.88, therefore the observed syndrome of abnormalities noted for 

fish exposed to these compounds is likely consistent with baseline toxicity.  

All compounds (except cymoxanil and lovastatin) from Table 1 where plotted 

against logKow and the results clearly show a strong relationship between 

lethal and sublethal responses and this physicochemical parameter (Figure 

1).  The high coefficient of determination (r2 >0.77) for these regressions 

indicates baseline toxicity for all plotted compounds.  The slopes for these 

regressions (0.63 – 0.71) are lower than the universal narcosis slope of 

0.9491; however they are very similar to the slope coefficient (0.67) shown 

by Ellison et al.107 for baseline toxicants from fish embryo toxicity testing. 

The observed variability among data points is likely a result of the variable 

lipid content for ELS fish50, a mix of polar and nonpolar compounds, variable 

exposure concentrations107, evaluation of responses at different time points, 

estimated Kow values, and variable toxicity metrics (LOEC versus ECp).   

In terms of TPH in the WSF, ELS fish toxicity occurs at aqueous 

concentrations in the range of 0.1 – 5 mg/L76,77,80 resulting in pericardial 

edema, skeletal and jaw abnormalities. Bioaccumulation modeling predicts 

whole-body concentrations of 2,500 mg/Kg in fish exposed to a WSF of 5 

mg/L assuming an average log10Kow of 4 for compounds, which is 

approximately 6 – 7 times the level needed for a baseline lethal response63.  

Also noteworthy are the data from Hawkins et al.51 and Vergauwen et al.70 

who observed the crude oil toxicity syndrome for ELS fish at phenanthrene 
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506 whole-body tissue concentrations of 0.2 – 3 mM (Table 1) after exposure to 

 0.05 – 0.5 mg/L, which is consistent with the data from Turcotte et al.44 and 

 within the expected range for baseline toxicity.   

 Table 1 also highlights the separation between lethal and sublethal effect 

 concentrations (LC50/LOEC or LC50/ECp) and the likelihood that these 

 exposure concentrations fall within the range noted for baseline toxicity. For 

 almost all compounds in Table 1, the lethal to sublethal ratio (ACR) falls 

 within the expected range of 1 - 10 for baseline toxicity91,93,108, and most are 

 less than 5. Lower ACR values indicate the relative closeness of lethal values 

 to sublethal responses for the ELS toxicity syndrome, which is noted for 

 baseline toxicants and less so for specific acting toxicants108,109. Also 

 noteworthy are the Esbaugh et al.40 data for LC50 and pericardial edema 

 exhibiting ACRs ranging from 0.7 to 3.5 for all WAF preparations, which are 

 based on dissolved ∑PAHs. Based on the predicted LR50 values, ACR data, 

 and correlations between Kow and toxic effects, most of the compounds in 

 Table 1 appear to be acting as baseline toxicants at these high 

 concentrations, which is also noted for the WAF results and tricyclic PAHs in 

 this table.   

 5.  OTHER MODES AND MECHANISMS OF ACTION FOR PAHS  

 The baseline mode of action mediated via calcium and potassium imbalance 

 is not the only possible response for PAHs. Numerous studies indicate that 

 PAHs can affect growth, lipid metabolism, immune dysfunction, and related 

 physiological responses in fish110–114. Many of these studies were conducted 

 with older life stages; however, these responses may also occur for ELS fish. 

 Suspected receptors for these responses include peroxisome proliferator-

 activated receptors (PPARs), early growth response protein-1 (ERG-1)115, 

 and other unidentified receptors. For example, receptor based changes via 
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PPARs may play a role in lipid metabolism, growth, and other related 

physiological responses116. 

Additionally, some PAHs (especially high molecular weight (HMW) 

compounds) are known to act via the aryl hydrocarbon receptor (AhR) to 

produce a similar suite of developmental abnormalities in ELS fish, (blue-sac 

disease)43. This response for ELS fish, although similar, is considered 

separate from the AhR-independent action of the tricyclic PAHs that are 

assumed to be the main toxic agents in a crude oil WSF. Even though dioxin-

like toxicity is considered to be receptor based and responses occur at very 

low doses, the specific molecular events causing such toxicity are not well 

established. It is interesting to note that AhR-dependent toxicity for PAHs is 

known to affect calcium levels and the heart is considered to be the target 

organ117. Calcium metabolism has also been highlighted as an important 

altered process for dioxin toxicity to zebrafish118. As noted by Incardona37, 

AhR activation for some HMW PAHs will down-regulate genes associated with 

calcium homeostasis, such as SERCA. Perhaps it is this commonality in 

molecular events that results in the similar syndrome of abnormalities for 

ELS fish resulting from AhR dependent and independent action, one specific 

(receptor based) and the other non-specific (baseline toxicity).  

6. TOXIC UNITS AND THE FALLACY OF ASSUMING HIGHLY TOXIC 

UNKNOWN COMPOUNDS 

One of the best ways to understand the contribution of various components 

within a mixture is to evaluate the toxic responses with a toxic unit 

approach. The base equation is as follows: 

Sum of toxic units (∑TU) = ∑n [water]i  i=1  
ECp i

Where ∑TU is the sum of toxic units (TU), [water] is the water concentration 

for the individual PAH, ECp is the effective concentration for a given endpoint 
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(e.g., spinal curvature or edema) and p is proportion responding. For an 

example, we can look at the 6 EC50s for phenanthrene and 

alkylphenanthrenes (excluding retene) from Turcotte et al.44, which range 

from 39 – 116 µg/L. If each compound was represented equally (0.166) in 

the mixture, the sum of those PAHs would equal 75 µg/L and the sum of 

toxic units would equal 1.0. Consider that the sum of concentrations for 

individual compounds in a mixture cannot be lower than the EC50 of the 

most toxic component when the ∑TU=1. For the TU analysis, it does not 

matter if you have 6 or 100 PAHs; the results will be the same. The sum all 

these PAHs cannot be lower than the EC50 for the most toxic compound in 

the mixture when ∑TU=1. This TU approach also assumes additivity and 

there are no data to indicate that the toxicity of a mixture of tricyclic PAHs is 

more than (or less than) additive. To achieve the low total tricyclic PAH 

concentrations (often below 1 µg/L) proposed by several authors, the 

potency for the PAHs found in the WSF would have to be at least 2 or 3 

orders of magnitude greater than what was reported in Turcotte et al.44 and 

Geier et al.45. There are no data to the contrary and we suspect that these 6 

phenanthrenes (excluding retene) are representative of the toxicity expected 

for this group of tricyclic PAHs covering a wide range in Kow. Based on this, 

we propose that a more reasonable explanation for the observed WSF 

toxicity includes the contribution of other unidentified hydrocarbons and 

polar compounds causing baseline toxicity or a receptor-mediated response 

at far higher concentrations than reported using a limited set of PAHs.  

As noted above for a toxic unit approach, a mixture of these compounds will 

not result in a comparable response at concentrations below that for the 

most toxic of alkylated phenanthrenes. It is also highly unlikely that there 

are unknown alkylated phenanthrenes that can produce a toxic response in 

ELS fish at concentrations far below those on the Turcotte et al.44 list, which 

may be an assumption for those concluding sub ppb concentrations for PAHs 
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causing larval fish abnormalities. The review paper by Hodson13 

(supplemental data) also supports toxic responses for tricyclic PAHs in the 

mid- to high ppb range, not sub-ppb aqueous concentrations as proposed by 

many authors.  

7. CONCLUSIONS AND RECOMMENDATIONS 

We would fully embrace the concept of PAHs as the toxic component of 

weathered crude oil WSFs if the data supported that conclusion. Such a 

framework would make comparing doses across WSFs and WAFs in the lab 

and field far easier for chemists and toxicologists. At this time, the critical 

experiment(s) to support that claim have not been performed or reported. 

This would entail exposing fish embryos to a mixture of the most toxic PAHs 

and eliciting responses at the claimed concentrations noted for the WSF from 

crude oil. A large number of alkylated phenanthrenes and other tricyclic 

PAHs are available commercially, so this is not an impossible task. 

Additionally, categorical identification of key receptor(s) and data on 

compound potency, including binding affinity, ligand efficacy, and IC50 

would be needed to define the MIE, which to date has not been achieved. 

The only reasonable conclusion is that there are additional compounds in the 

WSF that are likely contributing to the toxic response. In light of that, the 

most acceptable conclusion is that numerous component(s) of the WSF 

(PAHs, aliphatics, heterocyclics, polar compounds, and others) are 

contributing to the dose causing the observed syndrome of abnormalities. 

There is simply no proof that PAHs alone can cause adverse effects at the 

concentrations claimed by multiple authors. There is no doubt that relatively 

low levels of total petroleum hydrocarbons (mg/L) result in cardiac 

abnormalities leading to a cascade of abnormalities in ELS fish. What is 

remarkable about this response is the apparently permanent impairment to 

cardiac function when exposure occurs at a critical point during 
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development. Recent studies have demonstrated that fish embryos exposed 

to crude oil exhibited decreased swimming performance one year after 

exposure8,119, which is an important response having population-level 

consequences. This is also the case for impaired metabolism and growth at 

this critical life stage due to oil exposure112, which will affect vitality and the 

likelihood of a successful life cycle.  

Is it a coincidence that a large number of compounds, including 

nanoparticles, act by non-specific membrane disruption causing a very 

similar suite of responses for ELS fish as that claimed for exceedingly low 

levels of tricyclic PAHs via a specific receptor? Perhaps, however this cannot 

be confirmed until critical experiments are performed, the receptor is 

characterized, and tricyclic PAH potency is quantified. 

Based on the disparate data presented above, we conclude that the ELS fish 

toxicity syndrome elicited by suspected tricyclic PAHs is in fact a result of a 

much larger suite of compounds, perhaps some acting by a specific 

mechanism of action. We believe that the prevailing studies support a 

baseline toxic response for a common syndrome of effects for ELS fish 

exposed to crude oil WSF because of the lack of an identified receptor, 

similarity in the phenotypic response for other organic compounds and 

nanoparticles, and the lack of a well-characterized exposure dose, both 

external and internal. This is not to say that specific receptors for PAHs do 

not exist and that specific toxic responses, such as metabolic disruption and 

cardiac abnormalities are not evident. We would like to add that this 

synopsis does not negate any previous research, but strives to encourage a 

more scientifically defensible inference of the observed results.  

The most overriding recommendation we have to offer researchers is to 

suspend characterizing the toxicity of the WSF of oil in terms of the ∑PAHs, 

or at least include sufficient caveats highlighting the uncertainty. Toxicity for 
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these compounds must be evaluated on an individual basis and in terms of 

mixtures with all components known. Only then can we conduct field studies 

and provide reasonable levels of total petroleum hydrocarbons or a known 

suite of the most toxic compounds that can be used to predict toxic effects 

and set protective levels. We also recommend continued research on the 

UCM, especially the polar compounds, and their role in ELS fish toxicity. 

There is no doubt that the WSF from crude oil causes severe effects to larval 

fish and we believe the most appropriate, but not necessarily the best dose 

metric at this time would be water or tissue concentrations of total 

petroleum hydrocarbons (mg/L or mg/Kg TPH). As noted by Landrum et 

al.56, the absorbed dose along with information on toxicodynamics for 

individual components or classes (if available) is crucial for a more accurate 

toxicity assessment of complex mixtures.  

Additionally, because the ELS fish toxicity syndrome consisting of edemas, 

heart rate abnormalities, and morphological abnormalities is a generalized 

response to high concentrations of organic compounds acting by a baseline 

mechanism, we recommend searching for other genomic, physiological, or 

apical endpoints that may be more indicative of crude oil toxicity. Longer 

exposures at lower concentrations may also help to reveal specific responses 

that can be used to characterize crude oil toxicity.   
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Disclaimer: The scientific results and conclusions, as well as any views or 

opinions expressed herein, are those of the lead author (JPM) and do not 

necessarily reflect the views of NOAA or the Department of Commerce. 
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Figure caption 

Figure 1.  Data from Table 1 plotted to show relationship between Kow and 

toxicity in early life stage fish exposed to high concentrations of organic 

compounds.  Lines show the fitted regression and upper and lower 95% 

confidence bands (blue).  All values for compounds with a log10Kow >0 and 

baseline toxicity predicted were plotted.  a. Mortality, b.  Reduce heart rate, 

c. Edema, d. Morphological abnormalities.  Edema includes yolk sac and 

cardiac edema and morphological abnormalities includes spinal (mostly), 

eye, and jaw deformities.  A few compounds of interest are labeled. Some 

points indistinguishable and designated as (2 or 3).  Two additional LC50s 

included for phenanthrene from Gündel et al.62 and Butler et al.49.  Data 

from Turcotte et al.44 included one or more of these sublethal endpoints and 

are were plotted under morphological abnormalities (Figure 1d). Acry = 

acrylamide, DCA = 2,4-dicloroanailine, NP = 4-nonylphenol, BPA = bisphenol 

A, Phen = phenanthrene, Alkyl-Phen = alkylated phenanthrenes, TPH = total 

petroleum hydrocarbons.  See Table 1 for details. 
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Y = 0.46 - 0.63*Log Kow 
r2 = 0.87

BPA

TPH - WAF

Acry

Log Kow

0 1 2 3 4 5 6

Lo
g 

re
du

ce
d 

he
ar

t r
at

e 
(m

m
ol

/L
)

-4

-3

-2

-1

0

1

Y = 0.46 - 0.63*Log Kow 
r2 = 0.87

Acry

TPH - WAF (2)

NPBPA

Triclosan

Phenol

Propanolol

 



42 
 

Figure 1c. Log Kow
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Figure 1d. Log Kow
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Table 1.  Toxicity metrics for syndrome of effects observed for early-life stage fish. 

  LOEC or EC50 (mg/L) LC50 
(mg/L) 

LR50 pred 
mg/kg (mM)

Baseline
tox1 ACR Ref 

Chemical Log10 
Kow  

Heart 
rate 

reduced 
Edema Morph 

abnormality 

Impaired 
swim 

bladder 
inflation 

    

2,6 Dinitrotoulene 2.1 13 23.4 21.7 12.1 21.8 265 (1.5) Y 0.9 – 
1.8 1 

3-Chloroaniline 1.83 50 29.9 29.9 17.7 30.2 217 (1.7) Y 0.6 -
1.7 1 

4-Chloroaniline 1.83 > 25 > 17.3 > 17.3 9.9 18.9 136 (1.1) Y 0.8 – 
1.9 1 

4-nonylphenol 5.76 0.3 > 1 0.28 0.23 0.29 4554 (20.7) Y 0.3 -
1.3 1 

Cymoxanil 0.67 5 1.6* < 7.2 < 5.2 4.3 6.1 (0.03) ? 
0.6 – 
2.7 1 

Diclofenac 4.4 7 7.8* 9.5* 7.9 6.9 7565 (25.6) Y 
0.7 -
1.0 1 

Fenitrothion 3.12 2.5 3.5 3.4 2.25 3.2 286 (1.0) Y 
0.9 – 
1.4 1 

Lovastatin 4.31 0.01 0.008 0.008 0.006 0.12 110 (0.27) ? 
15 - 
20 1 

Mefenamic acid 5.1 1.7 1.7 2.6 1.7 1.6 6904 (28.6) Y 
0.6 – 
0.9 1 

Mercury (II) – NR 26.4 20.7 11.0 32.4 –  
1.2 -
2.9 1 

Phenol 1.46 45 55.4 51.8 33.0 60.4 210 (2.23) Y 
1.1 -
1.8 1 
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LR50 pred LC50 Baseline  LOEC or EC50 (mg/L) mg/kg ACR Ref (mg/L) tox1 (mM) 
Impaired Heart Log10 Morph swim Chemical rate Edema     Kow  abnormality bladder reduced inflation 

0.4 – 
Propanolol  3.0 5 10.9 24.6 5.3 8.8 623 (2.4) Y 1 1.8 

0.8 – p-Toluidine 1.3 26 53.4 81.4 39.9 64.6 164 (1.5) Y 1 2.5 
0.3 – 

Silver nitrate – 0.05 > 0.23 > 0.23 > 0.23 0.08 –  1 1.6 

0.4 - 
Tebuconazole 3.7 7 10.1 27.6* 11.0 10.8 3010 (9.80) Y 1 1.5 

0.7 – 
Triclosan 5 0.3 > 0.18 > 0.18 0.14 0.10 231 (0.80) Y 1 3.3 

Acrylamide @ 0.67 140 140 NR NR 140 197 (2.8) Y 1.0 2

1.0 - Triclosan 5 0.4 0.04 -0.4 NR NR NR 887 (3.1) Y 3 10 

1.6 – Verapamil 3.8 2 1 – 5 10.0 NR 16.4 436 (0.96) Y 4 8.2 

0.75 – 0.75 – Bisphenol A 4.04 0.75 – 3.0 0.75 – 3.0 3.96 2146 (9.4) Y 5.3 5 3.0 3.0
0.36 0.059 0.052 0.9 – Phenanthrene 4.57 NR (3.2 mM  (0.3 mM 0.31 382 (2.7)^ Y 6 (0.2 mM wb)^ 6.0 wb)71%^ wb)^ 

1.5 – 2-Nitroaniline 1.67 NR 26 18.5 9.6 40.1 210 (1.5) Y 7 4.2 

1.3 – 2,4-Dichloroaniline 4.12 NR 9.5 8.4 3.5 12.3 7797 (37) Y 7 3.5 

0.4 – 2-Chloroaniline 2.01 NR 14.3 > 16.5 4.4 6.9 70.4 (0.6) Y 7 1.6 
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  LOEC or EC50 (mg/L) LC50 
(mg/L) 

LR50 pred 
mg/kg 
(mM) 

Baseline
tox1 ACR Ref 

Chemical Log10 
Kow  

Heart 
rate 

reduced 
Edema Morph 

abnormality 

Impaired 
swim 

bladder 
inflation 

    

Phenanthrene  4.57  NR NR 0.089 NR –
136 (0.76) Y  8 

1‐
Methylphenanthrene 

5.16  NR NR 0.116 NR –
563 (2.9) Y  8 

2‐Ethylphenanthrene  5.2  NR NR 0.048 NR –
252 (1.3) Y  8 

2,7‐ Dimethyl 
phenanthrene 

5.4  NR NR 0.039 NR –
303 (1.5) Y  8 

1,7‐ Dimethyl 
phenanthrene 

5.4  NR NR 0.078 NR –
605 (2.9) Y  8 

7‐ethyl, 1‐Methyl 
phenanthrene 

5.7  NR NR 0.079 NR –
1103 (5.0) Y  8 

Butyl benzyl 
phthalate 

4.9  0.6 0.6 0.6 0.6 1.2# 3500 (11.2) Y 2 9 

Triadimefon  2.8  37.4 37.4 NR NR 47.2 2259 (7.7) Y 1.3 10 

Triclocarban  5.3  0.15 0.13&
NR

0.13 0.22 1372 (4.0) Y 1.5 – 
1.7 11 

Phenanthrene @  4.57  NR
0.5 (1.8 

mM wb)^ 
9%=signf

(1.8 mM 
0.5 

wb)^
100%

NR 0.5 
(44%)

316 (1.8)^ Y 1.0 12 

Mono & diaromatics  –  NR 1.5 – 2 1.5 –  2 NR 2.2 
(10 dph)

– Y 1.1 -
1.5 13 
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LR50 pred LC50 Baseline  LOEC or EC50 (mg/L) mg/kg ACR Ref(mg/L) tox1 (mM) 
Impaired Heart Log10 Morph swim Chemical rate Edema     Kow  abnormality bladder reduced inflation 

TPH in WAF £  4  NR 2.85ϒ NR NR 7.1 3,558 (17.8) Y 2.5 14

1.3  0.7 – 
TPH in WAF   4  NR 0.9 1.9 NR 652 (3.3) Y 15 

(larvae) 1.4 
0.25 – 0.97

TPH in WAF  4  NR NR (morphological NR NR – Y  16
and edema)

TPH in WAF  4  NR NR 1.1 NR 1.1 551 (2.8) Y 1.0 17

0.7 -
TPH in WAF  4  3.3 2.9 – 3.5 > 4.4 NR 2.6 – 3.4 1,504 (7.5) Y 18 1.0 

3.6 – 1.1 – 
TPH in WAF  4  0.32 – 3.3 1.5 – 3.5 0.32 – 1.0 3.6 – 4.3 2,005 (10.0) Y 19 3.9 6.0 

 

 

 

 

 

 

Most Log10 Kow values obtained from ChEMBL and PubChem. Edema includes yolk sac and pericardial edema and 
morphological abnormalities include spinal curvature, jaw, and eye.  All studies conducted with embryos and larvae 
ranging from 1 – 17 dpf, unless noted.  LR50pred for Turcotte et al.45 based on EC50, which combined all edemas and 
morphological abnormalities into one EC50 value.  # is LC20 and & = yolk sac absorption delay.  All sublethal values as 
LOEC or ECp, where p=percentage and most were 50%.  LR50pred is the predicted tissue concentration causing 
mortality using a rearranged standard BCF equation64. NR = not reported.  @= one concentration tested. ^ data from 
study (sac fry or embryo concentrations measured). Wb = whole body.  £ includes dispersant (e.g., Corexit), ϒ = blue-
sac index (includes edemas and morphological deformities).  Baseline tox1 indicates if the predicted tissue concentration 
associated with the LC50 or ECp falls within the range observed for baseline toxicity (mean= 1.8 mM; 95% CI = 0.18 – 
18.0 mM65. Y=yes. Comparison of concentrations for LC50 and sublethal responses expressed as acute-to-chronic ratio 
(ACR) (lethal/sublethal), which is LC50/LOEC or ECp.  ACR and LR50 used to determine if baseline toxicity possible.  
TPH = total petroleum hydrocarbons (not all compounds in WAF measured).  Studies that reported TPH using 
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fluorescence were not included because of under reporting. Baseline tox prediction for TPH assumes an average 
log10Kow=4 and molecular weight of 200 (see text).  Weathered oil used in study 14 and unweathered oil for 15 - 19. 

1.  Horie et al.66, 2. Huang et al.67, 3. Saley et al.68, 4. Steinbach et al.69, 5. Kankaya et al.70, 6. Vergauwen et al.71, 7. 
Horie et al.72, 8. Turcotte et al.45, 9. Sun and Liu73, 10.  Liu et al.74, 11.  Dong et al.75, 12. Hawkins et al.52, 13. Carls 
and Rice76, 14.  Greer et al.77, 15.  Pollino and Holdway78, 16.  Kocan et al.79, 17. Karam et al.80, 18. Philibert et al.81, 
19. Li et al.82.  Fish species studied in refs 1-3, 6-7, 9-11, and 18-19 was Danio rerio.  4, Cyprinus carpio. 5, 
Chalcalburnus tarichi. 8, Oryzias latipes. 12, Oncorhynchus mykiss. 13, Theragara Chalcogramma. 14, Clupea harengus. 
15, Melanotaenia fluviatilis. 16, Clupea pallasi. 17, Epinephelus coicoides.  
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